Monday, October 7, 2024

Unconventional technology enhances composites important to automotive, aerospace and renewable energy industries

  


Scientists at the Department of Energy's Oak Ridge National Laboratory have developed a method that demonstrates how fiber-reinforced polymer composite materials used in the automotive, aerospace and renewable energy industries can be made stronger and tougher to better withstand mechanical or structural stresses over time.

The composites already have many good things going for them. They are strong and lightweight relative to their metallic counterparts. They are also corrosion- and fatigue-resistant and can be tailored to meet specific industrial performance requirements. However, they are vulnerable to damage from strain because two diverse materials—rigid fibers and a soft matrix, or a binder substance—are combined to make them. The interphase between the two materials must be improved because of its influence on the overall mechanical properties of the composites.

ORNL's Sumit Gupta said the research team deposited thermoplastic nanofibers like cobwebs to chemically create a supportive network that toughens the interphase. Their technique differs from conventional methods of coating the fiber surfaces with polymers or providing a rigid scaffolding to improve bonding between the fiber and the matrix, which have been shown to be inefficient and expensive.

Gupta said he and the team carefully selected the nanofibers and matrix material to create high-surface-area scaffolding or bridging as a load transfer pathway, a mechanism through which stress is passed between the reinforcing fibers and the surrounding matrix material.

No comments:

Post a Comment

Composite storage tank industry steps up to US regulations

Gary L Arthur, president of the Fiberglass Reinforced Plastics Institute in the US explains how the composite industry set out standards in ...